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A factor analysis model with nonnegative constraints (FA)
was used to apportion the sources of PAHs found in
sediments of Lake Calumet and surrounding wetlands in
southeast Chicago. Source profiles and contributions, with
uncertainties, are determined with no prior knowledge of
sources. The model includes scaling and backscaling of data
with average PAH concentrations without sample
normalization. This work is a follow-up to a study that
used a chemical mass balance (CMB8.2) model to apportion
sources to the same data set. Literature source profiles,
modified based on gas/particle partitioning of individual PAHs,
from eight PAH sources were considered for comparison.
FA results for a two-source solution indicate coke oven
(45%) and traffic (55%) are the primary PAH sources to Lake
Calumet sediments. A six-source FA solution indicates
that coke oven (47%) and traffic (45%) related sources are
major PAH sources and wood burning-coal residential
(2.3%) is a minor PAH source. From the six-source solution,
two coke oven profiles are observed, a standard coke
oven profile (33%), and a degraded or second coke oven
profile (14%) low in phenanthrene and pyrene. Observed traffic
related sources include gasoline engine (36%) exhaust
and traffic tunnel air (9.3%). This work supports the previous
study of Lake Calumet PAHs by CMB model. In addition,
FA provides new insights since wood burning and secondary
coke oven profiles were not recognized in the CMB model.

Introduction
Polycyclic aromatic hydrocarbons (PAHs) are an environ-
mental concern due to their carcinogenic properties (1). PAHs
are compounds, containing typically two to eight aromatic
rings, which are produced by high-temperature reactions,
such as incomplete combustion and pyrolysis of fossil fuels
and other organic material (2). PAH producing activities
include the following: combustion of fuels in vehicular
engines, power generation from fossil fuels, coke production,
wood burning, incineration of industrial and domestic wastes,
oil refinery and chemical engineering processes, etc. (3).
Byproducts containing significant amounts of PAHs have
been dumped on the land, in the water, or buried at
subsurface sites (4). PAH-bearing airborne particulates,
generated from PAH producing activities, are transported in

the atmosphere and usually find their final destination in
soils and sediments of aquatic systems (4). Once deposited,
some PAH compounds, such as benz[a]anthracene (BaA),
may be biodegraded aerobically in the top sediment layers
(5). Considering degradation and unique source profiles,
PAHs can serve as tracers of pollution sources.

Factor analysis (FA) modeling has been utilized for source
characterization for air pollution control (6-9). FA is able to
operate with minimal knowledge about source character-
istics, meteorological conditions, transport and incorporation
mechanisms of pollutants into particles, etc., which are not
always available (10). To assess the efficiency and accuracy
of prediction, FA model results should be compared with
existing information about sources, transport processes, and
characteristics of receptor sites (10). A few applications of FA
modeling to characterize pollution sources in aquatic sedi-
ments have been published (10, 12-14). In one case (10),
time records rather than PAH source profiles were considered,
and there was no backscaling. In ref 12, sample normalization
was used in polytopic vector analysis on polychlorinated
dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), which
tends to hinder source resolution (11), and there was no
comparison with CMB model results. In other cases (13, 14)
factor analysis was used without nonnegative constraints
making it impossible to generate actual source profiles or
contributions. Chemical mass balance (CMB) modeling has
been used successfully to apportion PAH sources in aquatic
sediments (4, 15, 16).

The goal of this work is to determine the major PAH
sources to sediments of Lake Calumet, Illinois, using a FA
model with nonnegative constraints. From this point forward
FA refers to our model, which includes nonnegative con-
straints. The work will compare results obtained from the
study by Li et al. (15), which used CMB8.2 to apportion PAH
sources for Lake Calumet, Illinois. To our knowledge this is
the first application of an FA model for source apportionment
of PAHs in sediments. The current study requires no input
of source profiles and will provide uncertainties for the factor-
loading and factor-score plots. New findings and conclusions
will be discussed.

Factor Analysis Model with Nonnegative Constraints. A
detailed discussion of the FA model can be found in
Rachdawong and Christensen (17), Ozeki et al. (7), and
Imamoglu (11). The fundamental equation underlying the
principal component analysis based model is

where the data matrix D is factored into its components; the
factor-loading matrix C and the factor-score matrix R,
representing source compositions, and source contributions,
respectively. In addition, m, n, and r are the number of PAHs,
sources, and samples, respectively.

If the following assumptions are met, the factor loading
and factor score matrices can be interpreted in terms of PAH
source profiles and PAH source contributions: (1) the source
profiles do not change significantly in relative input patterns
from sources to receptor site; (2) the variation of individual
PAH flux is proportional to its concentration; (3) the total
PAH flux in a given time period is the sum of the total PAH
fluxes in that time period from all considered sources; (4)
source profiles and contributions do not covary; and (5) all
sampling sites are affected by the same major sources (18).

Selection of the number of significant factors and FA
model validation are described, in detail, by Imamoglu et al.
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(19). In short, the cumulative percent variance, coefficient
of determination (20), Exner function (21) and convergence
of the nonnegative rotations were all considered for deter-
mining the number of significant factors. Average scaling of
PAHs was applied to the data matrix to reduce the effect of
bias from PAHs with high concentrations (17, 22). The
covariance matrix, of dimensions m × m, was calculated
using the scaled data in the FA model. A matrix with
eigenvectors as columns, and a matrix with eigenvalues as
diagonal elements were determined. Using the eigenvector
and eigenvalue matrices a loading matrix is obtained.
Backscaling of the loading matrix is performed by multiplying
each column of the C matrix, with the average of each PAH.
The factor-loading matrices were then normalized to 1, for
presentation purposes. The inverse of this normalization was
applied to the R matrix, thus the correct D matrix is obtained
from multiplication of C and R.

Monte Carlo simulation was used to generate artificial
data sets to test the effectiveness of the FA model (11).
Successful reproduction of the factor-loading and factor-
score matrices was observed (11).

Methodology
Sampling and Chemical Analysis. Information regarding the
study area, sampling, sediment characterization, chemical
analysis and source profiles are described in detail in refs 15
and 23. Below is a brief summary.

Lake Calumet is located 15 miles south of metropolitan
Chicago. Surface water inflow is via Pullman Creek, a drainage
ditch (Figure 1). Outflow is by way of the Calumet River.
Since rapid industrial development began in the 1860s with
the laying of railroad tracks, the size of Lake Calumet has
been significantly reduced due mainly to the landfill of refuse
from nearby industries and municipal wastes, including the
ash and cinders from coal combustion for home heating and
cooking. Industries around the lake include petroleum
refineries, chemical plants, building material companies, and
grain processors as well as incinerators, landfills, and illegal
dumping sites. Interstate I-94 (Figure 1) opened in 1962; traffic
flows to I-94 have continually increased. A coke oven plant,
which was active at the time of sampling, is located less than
2 miles north of sampling location J. A north-south rail
corridor runs across wetlands to the west of the lake. A
number of residential communities are within a few miles
of the lake.

Nine sediment cores were collected in June 1997, from
the Lake Calumet area (Figure 1). Core I was collected by a
push corer; all other cores were collected by a gravity corer.
Cores were sectioned, and cores D, E, I, J, and K were dated
using 210Pb analysis. Sediment samples were Soxhlet ex-
tracted, cleaned-up, and concentrated. Instrumental analysis
was completed using a HP Model 5890-II gas chromatograph
equipped with DB-5 capillary column (30 m × 0.25 mm i.d.,
0.25 µm film) and a flame ionization detector. The identities
of PAHs in selected samples were confirmed using a HP model
6890+/5973 GC/MS. Surrogate recovery ranged from 48% to
90% with an arithmetic mean of 72.8%. Duplicate samples
yielded average relative standard deviations ranging from
10.3% to 25.6% among the 16 PAHs.

Source Profiles. PAH profiles from coal combustion and
traffic related sources were reported in ref 15. Wood burning,
which is a potential source in the study area, but was not
investigated in the previous work (15), was included in this
study. A total of 32 wood burning source profiles were
collected from 12 publications. Two wood burning source
profiles were generated from these source profiles using the
same procedure described in ref 15. Briefly, if the original
source data were reported as the sum of particulate and
gaseous PAHs, they were converted to particle-only profiles
by applying the P% values to the concentrations of individual
PAHs. The original source profiles containing only the
particulate PAHs were not modified. P% values are the
percentages of particulate to total airborne PAHs and were
estimated from reported gas-particle partitioning reported
in more than a dozen literature sources (15). After P%
corrections, PAH concentrations were normalized to that of
benzo[e]pyrene (BeP). Then, the fractions were calculated,
and the fractional composition is the source profile.

References for wood burning PAH profiles are given in
the Supporting Information. Wood burning profiles contained
the largest relative standard deviations (47%-197%) among
the sources, reflecting variations in types of wood burned,
combustion conditions, sampling method, and analytical
procedures. Due to the large influence of P% on low molecular
weight compounds, and the fact that a wood burning profile
is composed of lower molecular weight compounds, two
wood burning profiles are shown in Figure 2. Wood Burning
I is from particulate phase only measurements, correction
was not needed. Wood Burning II was derived using all the
literature source profiles, with P% values applied to convert
“total” to particulate PAHs. Comparison between Wood
Burning I and Wood Burning II validates the P% correction
approach in constructing PAH profiles. Fluoranthene (FlA)
and pyrene (Py) are slightly overcorrected, while benzo[b]-
fluoranthene + benzo[k]fluoranthene (Bb+kFlA), benzo[e]-
pyrene (BeP), benzo[a]pyrene (BaP), and indeno[123-cd]-
pyrene (IP) are somewhat undercorrected.

In addition to the phase speciation of the PAHs, source
profiles may also be affected by chemical, photochemical,
and biological degradation of PAHs before they enter the
sediment, as discussed in ref 15. The stability during
atmospheric transport of PAHs was not considered due to
the proximity of the sampling sites to sources. Partitioning
between water and settling particles in the lake may also
affect the abundance of PAH species before they reach bottom
sediments. Due to the strong affinity of PAHs to particulate
matter, their loss to the lake water may not be significant.
In this study, possible PAH degradation may be observed
through modified source profiles.

FA Modeling. The inputs to the FA model are the number
of sources and the data matrix. The initial data matrix
consisted of 17 PAHs and 75 samples, with units, of µg/kg.
Naphthalene was not included in the modeling, because of
the high uncertainties in its source profiles and possible
evaporative losses during chemical analysis of the sediment

FIGURE 1. Sampling locations in Lake Calumet area.
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samples (15). As a result of difficulties associated with GC
separation of BbFlA and BkFlA the sum of the two isomers
was used as the abbreviation Bb+kFlA (15). Also, samples
with concentrations less than 2 µg/g were not considered
(15). Thus, the resulting data matrix was 15 × 49. FA was
applied for a two-, three-, four-, five-, and six-source solution;
however, the FA model only yielded convergent solutions
for the two- and six-source solutions.

In addition to the 15 × 49 data set, a 15 × 43 data set was
modeled. This data set eliminated core K, where all six
samples had significantly higher IP concentrations than the
average IP concentration for the data set. Two- and five-
source FA solutions were obtained; three-, four-, and six-
source applications did not yield convergent solutions. PAH
sources were determined, qualitatively, by visually comparing
patterns between literature source profiles and factor load-
ings, and quantitatively, by the sum of squares difference
between normalized literature PAH source profiles, and
normalized FA model factor loadings.

Monte Carlo Simulation. To determine the uncertainty
of the FA model results Monte Carlo simulation was utilized.
The governing equation follows

where Dij is the generated PAH concentration from PAH i
and sample j, Aij is the starting concentration of PAH i from
sample j, Cij is the coefficient of variation of PAH i from sample
j, erf-1 is the inverse Gaussian error function and Rij is a
random number between 0 and 1.

Using Monte Carlo simulation nine artificial data matrices
D were generated and modeled by FA to yield nine factor-
loading and nine factor-score matrices. The standard devia-
tion of the mean for each entry in the factor-loading and
factor-score matrices was calculated to be the uncertainty.

Aij was taken to be the modified 15 × 49 data set. The
coefficient of variation for each sample was obtained from
the standard deviations of replicate experimental measure-
ments (15). If the coefficient of variation for a given sample
was less than 20% the value was used in the Monte Carlo
simulation, otherwise 20% was used as the coefficient of
variation value. If the coefficient of variations were much

larger than 20% the FA model would converge for less than
50% of the model runs, demonstrating the limits of the
robustness of the FA model. Nonconvergent solutions were
not included in the uncertainty analysis; new random data
sets were generated until 9 convergent solutions were
obtained.

Results and Discussion
FA Model Performance. Table 1 shows the results of
diagnostic tools, including the coefficient of determination
(COD), cumulative percent variance, and Exner function.
Each element in Table 1 is determined by running the FA
model without nonnegative rotations but with scaling and
backscaling. Table 1 also defines PAH abbreviations.

The Exner function is below 0.10, and the cumulative
percent variance is greater than 90% for all but the one factor
solution, representing excellent correlation. COD values for
the two-factor solution are generally greater than 0.90, but
less than 0.95, and for the six-factor solution fluorene (Fl) is
the only PAH with a COD less than 0.90. Notice that IP was
not well determined until the sixth source was added. In
general, the diagnostic tools indicate an excellent fit between
the modeled and actual data.

The two-source factor-loading solution presented in
Figure 3 displays two PAH source profiles. By visually
comparing PAH patterns (Figure 2), and from the sum of
squares of differences between modeled and literature PAH
profiles (Table 2), loading 1 of 2 appears to be coke oven
emissions, and loading 2 of 2 traffic tunnel airborne particles.
A disagreement was observed for IP in the coke oven profile
(loading 1 of 2), with the modeled values being much larger
than the literature value. One explanation for the enriched
IP values is the high IP concentrations measured in core K.
The influence of IP on the FA model is seen in the six-source
solution (Figure 4) as a separate source (loading 6 of 6). All
other PAHs have a reasonable fit to the model. For this reason
the value of IP was reduced to 30% of its modeled value
during the sum of squares calculation (Table 2), so the poor
fit of IP would not overshadow the excellent fit of the other
PAHs. The traffic tunnel profile fits the literature profile
(Figure 2, Table 2) well. Fluoranthene (FlA) and pyrene (Py)

FIGURE 2. Source profiles. Wood Burning I contains only particulate phase literature sources. Wood Burning II contains both particulate-
and gaseous-phase literature sources. Error bars represent a constant relative error of 40%.

Dij ) Aij + CijAij[x2erf-1(2Rij - 1)] (2)
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are overestimated, while benzo[ghi]perylene (BghiP) is
underestimated. The percent contributions from the coke
oven emissions and traffic tunnel were calculated to be 45%
and 55%, respectively, based on the average of the four
individual percent contributions from cores D, E, I, and K.
This agrees well with the overall results of 52% from coal-
related sources and 48% from traffic tunnel obtained from
CMB modeling Operation #5 (15) and the results of 51% from
coke oven and 42% from both gasoline and diesel engine

emissions by CMB Operation #2 (15). Operations #2 and #5
were particularly significant statistically.

Note that the source profiles derived from two-factor
solution of FA (Figure 3) match coke oven and traffic tunnel
sources, not the “Coal Average” and “Traffic Average” shown
in Figure 2 of ref 15. In fact, these two averages show
considerable similarities, which resulted in poor CMB
modeling results (high percentage of source contribution
estimates were “inestimable”). Averaging source profiles
across categories diminishes the difference, resulting in
unsuccessful model runs.

The agreements between the literature (Figure 2) and the
model-derived source profiles and between the relative
source contributions resulting from the CMB and FA models
are remarkable. The CMB model relies on the availability
and the adequacy of the source profiles of all major sources,
from which the source contributions were computed using
statistical techniques, such as, the effective variance weighted
solution used in EPA’s CMB8.2. In contrast, no a priori
knowledge about the source emission is needed to run the
FA model. Compared with previous applications of factor
analysis for atmospheric apportionment (9, 24), our FA
modeling with nonnegative constrains has the advantage of
detailed comparison with literature source profiles and with
results of CMB modeling.

The six-source factor-loading solution is presented in
Figure 4. By comparing with the literature source profiles
shown in Figure 2, and sum of squares calculations in Table
2, the six sources include two coke oven sources, a gasoline
engine source, a traffic tunnel source, a wood burning/
residential coal source, and a loading dominated by IP.

TABLE 1. Results of Diagnostic Tools Application for the Determination of the Number of Significant Factors for Lake Calumet (IL)

coefficient of determination factors

PAHs 1 2 3 4 5 6

acenaphthylene (AcNP) 0.31 0.45 0.76 0.95 0.99 1.00
acenaphthene (AcN) 0.35 0.37 0.48 0.70 0.99 0.99
fluorene (Fl) 0.30 0.61 0.62 0.66 0.78 0.79
phenanthrene (PhA) 0.79 0.83 0.83 0.90 0.93 0.95
anthracene (An) 0.65 0.92 0.93 0.93 0.93 0.94
fluoranthene (FlA) 0.77 0.87 0.88 0.96 0.97 0.97
pyrene (Py) 0.66 0.85 0.85 0.98 0.98 0.98
benz[a]anthracene (BaA) 0.91 0.95 0.95 0.97 0.97 0.97
chrysene (Chy) 0.96 0.96 0.96 0.97 0.98 0.98
benzo[b]+[k]fluoranthene (Bb+kFlA) 0.93 0.93 0.94 0.94 0.95 0.96
benzo[e]pyrene (BeP) 0.92 0.93 0.96 0.96 0.97 0.98
benzo[a]pyrene (BaP) 0.79 0.82 0.90 0.93 0.96 0.97
indeno[123-cd]pyrene (IP) 0.63 0.86 0.87 0.87 0.89 1.00
dibenz[a,h]anthracene (DBahA) 0.31 0.76 0.95 0.95 0.99 1.00
benzo[ghi]perylene (BghiP) 0.79 0.88 0.94 0.95 0.96 0.98

cumulative %
variance 88.4 93.3 95.7 97.3 98.6 99.2
Exner function 0.13 0.07 0.06 0.04 0.03 0.02

TABLE 2. Sum of Squares for All PAH Compoundsa

literature PAH profiles (Figure 2)

factor loadings
(Figures 3 and 4)

power
plant

coal
residential

coke
oven

wood
burning I

gasoline
engine

diesel
engine

traffic
tunnel

1 of 2b 0.061 0.130 0.007 0.093 0.046 0.107 0.013
2 of 2 0.025 0.089 0.019 0.028 0.021 0.053 0.015
1 of 6 0.087 0.167 0.016 0.119 0.063 0.143 0.024
2 of 6c 0.033 0.092 0.063 0.018 0.018 0.042 0.038
3 of 6 0.077 0.123 0.036 0.090 0.051 0.103 0.027
4 of 6 0.128 0.220 0.024 0.168 0.100 0.202 0.055
5 of 6d 0.042 0.045 0.085 0.049 0.057 0.037 0.062

a Bold faced type indicates probable PAH source profile as discussed in the text. b IP concentration reduced to 30% of the value modeled. c BghiP
concentration changed to the amount present in the literature gasoline engine profile. d PhA and FlA were not considered in the analysis because
of high uncertainties in the literature source profiles for wood burning.

FIGURE 3. Factor loading plots for Lake Calumet two-source factor
analysis solutions.
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Loading 1 of 6 is a coke oven profile. The model is not able
to reproduce BaP and IP really well, i.e., the modeled profiles
do not match the literature profiles. The model reproduces
most other PAHs accurately, as supported by the sum of
squares calculation (Table 2) for coke oven, (loading 1 of 6)
which is the lowest.

Loading 2 of 6 represents a gasoline engine profile. A
distinct pattern is observed between the literature and
modeled profiles for the PAHs FlA, Py, BaA, Chy, Bb+kFlA,
BeP, and BaP. This pattern is not present in other literature
source profiles, such as wood burning and power plant. The
model has difficulties reproducing BaP and BghiP to the
fractional source compositions from the literature. Uncer-
tainty analysis does indicate BaP and BghiP are present in
some simulations. For the sum of squares calculation the
concentration of BghiP was increased to that of the gasoline
engine literature profile to determine if the remaining PAHs
were modeled well. Loading 3 of 6 is a traffic tunnel profile.
Low molecular weight PAHs are reproduced fairly accurately
by the model; however, some higher molecular weight PAHs
such as BaP, IP, and dibenz[a,h]anthracene (dBahA) vary
from the literature profiles. The variance of IP and dBahA
could result from the poor separations between IP and dBahA
(15), and also the uncertainty for dBahA is the largest
observed. The uncertainty for BaP is also significant. Sum of
squares calculations (Table 2) indicate traffic tunnel is the
best fit to model data.

An interesting point from the above discussion is that
there are two traffic sources generated by the model.
Considering the primary traffic source to be I-94, located
just west of Lake Calumet (Figure 1), one may wonder how
this is possible. We believe the separate sources are a result
of varying inputs from traffic sources. For example, I-94 may
have primary gasoline engine traffic during daytime hours
and more of a mixture of traffic tunnel sources during the
nighttime. The split in traffic sources could produce two
sources that are distinguished by the FA model.

Loading 4 of 6 is another coke oven profile. This profile
is low in PhA and Py; however, it is enriched with BaP and

An. Uncertainty analysis does indicate PhA and Py are present
and quite uncertain. This profile could result from a separate
coke oven facility, possibly in Gary, Indiana. This would
indicate the first coke oven source is from the coke plant
located two miles north of site J. Another explanation for the
second coke oven source is that it represents a degraded
coke oven profile, with losses of PhA and Py observed. It is
also possible that the same coke oven emits two different
signals based on fuel source, installation of controls, and so
forth, although the prevalence of the secondary profile
(Loading 4 of 6) in core I and the primary profile (Loading
1 of 6) in core D (Figure 5) suggest two different coke oven
sources.

Loading 5 of 6 has properties of a wood burning profile
or a mix of a wood burning and residential coal profile. Most
of the literature sources for wood burning do not measure
acenaphthene (AcN); however, it is present in loading 5 of
6 and is much more abundant than indicated by the literature
sources. Two outlier values of AcN in the data set, J-3 and
I-5, may be influencing the FA model. PhA is very abundant
in loading 5 of 6, possibly a result of combined residential
coal and wood burning source or an artifact of the model.
FlA is abundant in wood burning profiles but only seen in
the uncertainty analysis for loading 5 of 6. The wood burning
literature profiles are uncertain as seen with Wood Burning
I and Wood Burning II (Figure 2), thus variance is expected
between loading 5 of 6 and a literature wood burning profile.
The sum of squares calculation (Table 2) for loading 5 of 6
eliminates PhA and FlA because of high uncertainties in the
literature source profiles for wood burning. As a result of the
small percent contribution (2.3%), from loading 5 of 6, it is
possible that other PAH sources such as power plant are
influencing the source profile. Source contributions from
loading 5 of 6 will be discussed below and provide evidence
for a wood burning or combined wood burning-residential
coal source. Loading 6 of 6 is dominated by IP and believed
to be a result of the high IP concentrations in core K.

To examine if high IP values in core K would account for
a factor of six, a FA model run was made where core K was

FIGURE 4. Factor loading plot for Lake Calumet six-source factor analysis solution with error bars representing the standard deviation
of the mean for nine FA model runs using data sets created by Monte Carlo simulation.
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eliminated from the data set. Two- and five-factor solutions
were convergent (three, four, and six were not convergent),
and the resulting loadings were similar to the two- and six-
factor solutions without loading 6 of 6. Thus, factor 6
represents high IP values in core K. Loading 1 of 2 (Figure
3) did see a reduction in IP also. Core K was left in the study
to include as much information as possible.

Overall Source Contributions. Source contributions for
the two-source solution (not shown) are in relative agreement
with the six-source solution. Therefore, only the six-source
source contributions are shown in Figure 5 and discussed
below. The left column of Figure 5 shows the individual
contributions from all five PAH sources, coke oven, gasoline
engine, traffic tunnel, coke oven, and wood burning, with
the sixth factor containing mostly IP omitted. The percent
contribution from each source was calculated based on the
average of the four individual percent contributions from
cores D, E, I, and K. The percent contribution from each
source is ∼33%, 36%, 9.3%, 14%, and 2.3%, respectively, the
IP factor contributes ∼6.0%. The right column shows the
wood burning and the sum of coke oven and traffic sources,
with the sixth factor omitted. In general, all cores are
dominated by the first coke oven source and a traffic source.
This finding is in agreement with ref 15.

The individual source contribution profiles from the right
columns of Figure 3, from ref 15 (Figure 6) and Figure 5
(current study) will now be compared and analyzed. Only
cores (D, E, I, and K) containing more than two samples are
plotted. Core D is comparable in both figures, with combined
traffic having the larger contribution. A larger traffic con-
tribution is expected due to core D’s location near I-94. Traffic

contributions peak in the late 1980s and early 1990s. A
continual increase in traffic contributions is seen before 1988.
The wood burning-residential coal profiles were found to
be much less significant by both studies, although Figure 6
shows a fluctuating profile, while Figure 5 displays more
constant contributions that have a minimum in 1953.

Core E displays higher coke oven and traffic contributions
from 1958 to 1997 in both Figures 5 and 6. After 1958 the
contributions increase significantly. The increase in traffic
contributions after 1958 could be a result of I-94 opening in
1962. The contributions from coke oven, traffic, and wood
burning-coal residential are all in general agreement. No
distinct wood burning minimum is observed.

For core I source contributions from coke oven and
combined traffic vary between ref 15 (Figure 6) and Figure
5. For example, in Figure 6 coke oven is a larger contributor
of PAHs before 1989, but traffic remains the primary PAH
source in Figure 5. However, the contribution magnitudes,
in µg/g, for both Figures are similar. In Figure 5 the traffic
contribution is fluctuating, but a sharp increase is observed
after 1954. The wood burning-coal residential profiles do
have an interesting feature, for 1989 both models show a
higher contribution, possibly attributed to a data set outlier
I-5, which contains a high AcN concentration. The wood
burning and coal residential profiles do show a minimum in
the early 1980s and 1970s in agreement with U.S. wood
consumption figures (18, 25, 26).

Core K is dominated by traffic tunnel in Figure 6, but
combined coke oven dominates in Figure 5. Core K is ∼2
miles south of a coke oven plant that was active during
sampling, thus high coke oven contributions can be expected.

FIGURE 5. Left: Source contributions for five of six factors. Right: Source contributions for combination of coke oven and traffic sources,
and wood burning-residential coal source. Error bars represent the standard deviation of the mean for nine data sets created by Monte
Carlo simulation.
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With the exception of 1997, traffic profiles are fairly constant
in Figure 5; however, a small peak in 1988 is observed. Wood
burning and coal residential have small contributions in both
models. However, in Figure 5 there appears to be a minimum
between 1982 and 1992, indicating that a wood burning
source may be more likely than a coal residential source
(18). The variance between Figure 6 and Figure 5 may be
attributed to several outlier IP values in core K, with Figure
5 probably being more accurate since IP here is represented
by a separate factor.

Overall, combined coke oven (47%) and combined traffic
(45%) have the largest PAH contribution to Lake Calumet.
Traffic contributions increase significantly after the 1960s,
and there seems to be a consistent maximum contribution
in the late 1980s and early 1990s. Coke oven contributions
are highest in core K, which is located near the coke oven
facility. Wood burning is a minor PAH source. Loading 5 of
6 (Figure 5) is taken as the mix of residential coal combustions
and wood burning rather than only residential coal combus-
tion. The reason is that this source contribution is observed
to continue after the 1950s, while coal was not used as
domestic heating fuel much after the 1950s, and cores D and
I have minimum wood burning values in the 1950s and 1960s.
From the literature (18, 25, 26), a wood burning minimum
in U.S. consumption is seen in the 1960s.

Compared with previous FA models for atmospheric PAHs,
we show here that coke oven emissions is the most important
coal-related PAH source, and we provide uncertainties of
the estimated source profiles. In addition, time records of
wood consumption are used to demonstrate that the low-
molecular weight dominated PAH source profile is likely to
be from wood burning rather than residential coal.
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FIGURE 6. Source contributions from CMB model analysis, by Li
et al. 2003 (15), for Operation #5.
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