

Climate Change Update to the Chicago Wilderness Biodiversity Recovery Plan:

What Does it Mean to the Calumet Region?

Dr. Abigail Derby Lewis, Climate Change Ecologist The Field Museum

A Changing Global Climate

- ♦ Higher temperatures
- ♦ Changing landscapes
- \diamond Wildlife at risk
- \diamond Rising seas
- \diamond Increased risk of drought, fire & floods
- ♦ Stronger storms & increased storm damage
- \diamond More heat-related illness & disease
- \diamond Economic losses

Extreme Precipitation

Higher Emissions Scenario 31 days

7 days

Lower Emissions Sca

5 days

2010-2039

Higher Emissions Scenario

1961-1990

Higher Emissions: 31 days

Projected number of 100degree days per year in Chicago

Lower Emissions: 8 days

Copyright 2009, City of Chicago

Impacts of Climate Change in Indiana

**Climate protection policies, if implemented quickly, could reduce emissions significantly below the emissions scenario considered here

Impacts of Climate Change in Illinois

By the end of the century, Illinois summers may feel like those of current-day east Texas. **Union of Concerned Scientists**, 2009 400 ²C 2 - 42030 summer 4.8 3-4 witther: 2095 summer 🛖 9-17 5-10 2003 winter 🔶 7-13 \$-7 2030 winter % Increase/Decrease PREDing Dillion 2030 summer # -5 10 0 winter 🔶 0 10 -15 2095 2030 2095 summer # -15 to 0 winter 🔶 0 to 20 summer 2095 % locrease 24kour/Multiday EXTRACAL precipitation events EVENTS 2095 summer 50-150 winter

> **Climate protection policies, if implemented quickly, could reduce emissions significantly below the emissions scenario considered here

Climate Change Impacts: Vegetation

Plant Hardiness Zones

◇ Projected to move northward
◇ Within next several decades: 5b – 6a*
◇ By end of century: 6b (L) – 7a (H)

*Irrespective of future emissions scenarios (Hellmann et al. 2010)

Climate Change Impacts: Animals

Changes in Abundance & Distribution

Climate Change Impacts: Animals

Changes in Abundance & Distribution

Responses of species will depend on their climatic tolerances and on responses of key species they rely on

Climate Change Impacts: Animals

Changes in Abundance & Distribution

 Specialists and threatened species likely to be most challenged (e.g., Karner Blue butterfly: Lycaeides melissa samuelis)

Major Threats To Biodiversity

- Habitat Destruction
- Invasive Species
- Pollution

Major Threats To Biodiversity

- Habitat Destruction
- Invasive Species
- Pollution

****CLIMATE CHANGE IS A THREAT AMPLIFIER****

Climate Action Plans

Contraction of the local

City of Chicago Climate Action Plan Chicago Wilderness Climate Action Plan for Nature

- Human population
- Buildings
- Transportation infrastructure
- Landscaping

Urban forests Water infrastructure

• Vacant land

• Rivers and lakes

- Restored natural areas
- Remnant natural areas
- Native species

Climate Action Plans

and the second se

Over 360,000 acres of protected open space

Chicago Wilderness Climate Action Plan for Nature

> Biodiversity RECOVERY PLAN

CLIMATE CHANGE AND REGIONAL BIODIVERSITY: Preliminary Assessment and Recommendations for Chicago Wildemess Member Organizations

CHICAGO WILDERNESS

Biodiversity Recovery Plan Climate Change Review

Climate Change Update

• What Is It?

- Identify and understand the specific ways natural communities, and existing threats, will be affected by climate change
- Examine if strategies needed to promote biodiversity adaptation differ from current restoration/conservation strategies
- Outline actions to help natural communities adapt to both current and future landscapes

Biodiversity Recovery Plan Climate Change Review

Climate Change Update

- What Is The Process?
 - Composite information from 2 workshops (Feb, July 2009)
 - Input and feedback from members of the CW Climate Change Task Force
 - Input and feedback from regional/local experts in climatology, ecology, biology, genetics, environmental science, and natural resource and land management

Biodiversity Recovery Plan Climate Change Review

Climate Change Update

- Where Are We Now?
 - Internal content review by the Task Force and Research Specialists
 - > Workshop with land managers to get input on adaptation strategies
 - Open review for CW members
 - Living document on-line web portal: interactive with blog and chat applications, annual updates of content

Х	X	Increased temperatures and changes in precipitation patterns will alter seasonal patterns of snow accumulation and snowmelt.	X					
Х	X	Increased temperatures will promote species that are invasive or act as disease vectors.			X	X	X	X
Х	/Forested ities	Increased temperatures will lead to mismatched shifts in timing of various ecological events (e.g., budburst), leading to disruptions in species inter TERRESTRIAL COMMUNITIES						
Х	Savannas Communi	Increased ter., permanent and enanges in arought succes (etc) will lead to differential shifts in ranges due to differences in dispersal abilities/rates, leading to disruption of key species interactions ("tearing apart of communities").		X				Change in structural
X	X	Increased temperatures and changes in precipitation patterns will alter seasonal patterns of snow accumulation and snowmelt	x					<u> </u>
Х	X	Increased temperatures will promote species that are invasive or act as disease vectors.			X	X	X	X
Х	X	Increased temperatures will lead to mismatched shifts in timing of various ecological events (e.g., budburst), leading to disruptions in species interactions.						
Х	X	Increased temperatures and changes in drought stress (etc) will lead to differential shifts in ranges due to differences in dispersal abilities/rates, leading to disruption of key species interactions ("tearing apart of communities").		X				
Х	X	Increased temperatures and changes in precipitation will drive human changes in land and resource use, leading to more habitat loss.	Х	X				X
Х	X	Increases in ambient CO_2 concentrations, temperature, and drought stress may lead to changes in the competitive ability of native C3 and C4 plants relative to each other and to invasives (but					X	X

Х	Х	Increased temperatures and changes in precipitation patterns will alter seasonal patterns of snow accumulation and snowmelt.	X					
Х	X	Increased temperatures will promote species that are invasive or act as disease vectors.			X	X	Х	X
Х	/Forested ities	Increased temperatures will lead to mismatched shifts in timing of various ecological events (e.g., budburst), leading to disruptions in species inter TERRESTRIAL COMMUNITIES						
Х	Savannas Commun	Increased ter., perturbed and changes in arought succes (etc) will lead to differential shifts in ranges due to differences in dispersal abilities/rates, leading to disruption of key species interactions ("tearing apart of communities").		X				Change in structural
X	X	Increased temperatures and changes in precipitation patterns will alter seasonal patterns of snow accumulation and snowmelt	X			 		
Х	X	Increased temperatures will promote species that are invasive or act as disease vectors.			X	X	X	X
Х	X	Increased temperatures will lead to mismatched shifts in timing of various ecological events (e.g., budburst), leading to disruptions in species interactions.						
X	Х	Increased temperatures and changes in drought stress (etc) will lead to differential shifts in ranges due to differences in dispersal abilities/rates, leading to disruption of key species interactions ("tearing apart of communities").		X				
Х	X	Increased temperatures and changes in precipitation will drive human changes in land and resource use, leading to more habitat loss.	X	X				X
Х	X	Increases in ambient CO_2 concentrations, temperature, and drought stress may lead to changes in the competitive ability of native C3 and C4 plants relative to each other and to invasives (but interactions are complex).					Х	X

X	Х	Increased temperatures and changes in precipitation patterns will alter seasonal patterns of snow accumulation and snowmelt.	Х					
X	X	Increased temperatures will promote species that are invasive or act as disease vectors.			X	X	Х	X
X	/Forested ities	Increased temperatures will lead to mismatched shifts in timing of various ecological events (e.g., budburst), leading to disruptions in species inter TERRESTRIAL COMMUNITIES						
X	Savannas Commun	Increased ter., perturbed and changes in along in succes (etc) will lead to differential shifts in ranges due to differences in dispersal abilities/rates, leading to disruption of key species interactions ("tearing apart of communities").		X				Change in structural
	1	· · · · · · · · · · · · · · · · · · ·			1			
X	X	Increased temperatures and changes in precipitation patterns will alter seasonal patterns of snow accumulation and snowmelt.	Х					
X	Х	Increased temperatures will promote species that are invasive or act as disease vectors.			X	X	Х	X
X	X	Increased temperatures will lead to mismatched shifts in timing of various ecological events (e.g., budburst), leading to disruptions in species interactions.						
X	X	Increased temperatures and changes in drought stress (etc) will lead to differential shifts in ranges due to differences in dispersal abilities/rates, leading to disruption of key species interactions ("tearing apart of communities").		X				
X	X	Increased temperatures and changes in precipitation will drive human changes in land and resource use, leading to more habitat loss.	Х	X				X
X	X	Increases in ambient CO_2 concentrations, temperature, and drought stress may lead to changes in the competitive ability of native C3 and C4 plants relative to each other and to invasives (but					Х	X

		0 0						
X	X	Increased temperatures and changes in precipitation patterns will	Х					
		alter seasonal patterns of snow accumulation and snowmelt.						
X	X	Increased temperatures will promote species that are invasive or act			X	X	X	X
	-	as disease vectors.						
X	stec	Increased temperatures will lead to mismatched shifts in timing of						
	ore	various ecological events (e.g., budburst), leading to disruptions in						
	<u>-</u>	species interaction TERRESTRIAL COMMUNITIES						
X	nas	Increased terpersuances and enanges in accurate succes (etc) will lead		X				ge ir ura
	an	to differential shifts in ranges due to differences in dispersal						ang
	Or	abilities/rates, leading to disruption of key species interactions						Chá
		("tearing apart of communities").						– 01

		·						
Х	Х	Increased temperatures and changes in precipitation patterns will alter seasonal patterns of snow accumulation and snowmelt.	Х					
Х	Х	Increased temperatures will promote species that are invasive or act as disease vectors.			Х	Х	Х	Х
Х	Х	Increased temperatures will lead to mismatched shifts in timing of various ecological events (e.g., budburst), leading to disruptions in species interactions.						
Х	Х	Increased temperatures and changes in drought stress (etc) will lead to differential shifts in ranges due to differences in dispersal abilities/rates, leading to disruption of key species interactions ("tearing apart of communities").		X				
Х	Х	Increased temperatures and changes in precipitation will drive human changes in land and resource use, leading to more habitat loss.	Х	X				Х
X	Х	Increases in ambient CO_2 concentrations, temperature, and drought stress may lead to changes in the competitive ability of native C3 and C4 plants relative to each other and to invasives (but interactions are complex).					X	X

	Λ			of warm water (combination of increased temperature effect, and increased storm intersity)				
X	X			Increased temperatur Climate Change Impacts id/ephemeral stream, further isolate/fragment and stress wetlands/riparian habitats that remain.	X	Х		Х
X				Increased temperatures and lake level drops will increase pressure on groundwater resources, threatening groundwater fed systems.	X			
		X	X	Increased temperature will reduce the duration/extent of ice cover on lakes.	X			
		X		Climatic changes will lead to changes in wind patterns, which alter the circulation of water in coastal areas (bays).	Х			

	Λ			of warm water (combination of increased temperature effect, and increased storm intensity).	л					
Х	X			Increased temperatures will lead to drying of wetland/ephemeral stream, further isolate/fragment and stress wetlands/riparian habitats that remain.	X	Х				х
X				Increased temperatures and lake level drops will increase pressure on groundwater resources, threatening groundwater fed systems.	X					
		X	X	Increased temperature will reduce the duration/extent of ice cover on lakes.	X					
		X		Climatic changes will lead to changes in wind patterns, which alter the circulation of water in coastal areas (bays).	X					
		X	X	Increased temperatures/evapotranspiration will lead to drops in lake levels & promote shifts in the location of coastal and nearshore habitats.				Х		Х
X	X	X		Increased demand for biofuels will intensify potential for run-off/erosion related impacts on aquatic systems as land is converted and usage of fertilizer and pesticides increases.			Х	Х		
		X		Drops in lake levels will expose toxic sediments.			X			
		X		Drops in lake levels will expose more nearshore areas to aquatic invasives like <i>Phragmites</i> .		X			X	

Wetlands, Wet Prairies, Wet Swales

➢ 62% of Calumet Region Restoration Sites

CW Magazine Calumet Region Map - Bouman et al 2009

Data from: An Assessment of Restoration and Stewardship in the Calumet Region of Illinois and Indiana, 2009; Restoration Inventory Project, 2006

Hydrology in the Calumet Region

- Most of the hydrologic systems in the Calumet region have been altered
- Changing precipitation patterns change (e.g., overall drier summers, more severe flood events) will create even greater challenges for these systems

Hydrology in the Calumet Region

- Most of the hydrologic systems in the Calumet region have been altered
- Changing precipitation patterns change (e.g., overall drier summers, more severe flood events) will create even greater challenges for these systems
 - Wetlands disconnected from lake, floodplains, and from each other
 - Emergent marshes drying up

General Adaptation Strategies

Examples

- Make current projects "climate smart": e.g., sediment remediation project along West Branch of Grand Calumet River
- Manage species that reduce water from permanent water habitats (e.g., cottonwoods, cattails, *Phragmites* in Spangler Fen)

Keep full hydrologic gradient intact within natural communities

Wetlands, Wet Prairies, Wet Swales

Total acres in CW Calumet Bi-State area: 551,000
 Total managed acres: 42,000

CW Magazine Calumet Region Map - Bouman et al 2009

Data from: An Assessment of Restoration and Stewardship in the Calumet Region of Illinois and Indiana, 2009; Restoration Inventory Project, 2006

Wetlands, Wet Prairies, Wet Swales

Total acres in CW Calumet Bi-State area: 551,000 Total managed acres: 42,000

≻ GIV: 169,000

CW Magazine Calumet Region Map - Bouman et al 2009

Data from: An Assessment of Restoration and Stewardship in the Calumet Region of Illinois and Indiana, 2009; Restoration Inventory Project, 2006

Shifting Landscapes, Shifting Perspectives?

Examples

> How might our perspective on ecological concepts change?

- "Native" species
- Best Management Practices
- Restoration

Shifting Landscapes, Shifting Perspectives?

Examples

> How might our perspective on ecological concepts change?

- "Native" species
- Best Management Practices
- Restoration

Overall focus on ecosystem functionality
 Managing for the arenas, not the players

ACKNOWLEDGEMENTS

Laurel Ross Doug Stotz Mark Bouman Bob Moseley Paul Labus Kirk Anne Taylor Kim Hall CW Climate Change Task Force

Field

Tiger Salamander, photo by

Hine's Emerald Dragonfly

Chicago

Wilderness